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Introduction

Integrative medicine approaches such as Healing Touch 
(HT) and relaxation training (RT) have been frequently 
observed to have a positive effect on pain, nausea, anxi-
ety, and fatigue in adults with cancer.1-6 We have previ-
ously reported that among patients with cervical cancer, a 
6-week HT biobehavioral intervention during chemora-
diation preserved natural killer cell cytotoxicity (NKCC),7 
which is a key component of cellular immunity and can-
cer control.8,9 We also found that HT decreased depres-
sive symptoms in patients with cervical cancer receiving 
chemoradiation when compared to RT and usual care 

(UC).7 Natural killer cell function is related to the activity 
of metabolic pathways, such as glycolysis and fatty  
acid oxidation10; however, the molecular mechanism(s) 
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Abstract
Introduction: Cancer treatment with chemotherapy frequently leads to side effects such as fatigue, pain, nausea, and 
anxiety. Healing Touch is a non-invasive complementary therapy often used by cancer patients to address side effects of 
treatment. To better inform the use of complementary therapies, there is a need to understand the biological mechanisms 
underlying the effects of such treatments.

Methods: This study included 44 patients with cervical cancer undergoing chemoradiation randomized into a Healing 
Touch (HT), a relaxation training (RT) and a usual care (UC) group. An exploratory metabolomics analysis was conducted 
on plasma samples taken at baseline, 4, and 6 weeks of ongoing treatment (4 sessions per week).

Results: A multivariate data analysis revealed no significant separation in metabolites between the 3 groups. Univariate 
data analysis revealed changes in metabolites between baseline and week 6 within each group. The main findings were 
lower levels of acylcarnitines, bile acids and proline in the HT group, higher levels of fatty acids in the HT and RT 
groups, and lower levels of kynurenine and quinolate in the UC group. The network of correlations between metabolites 
shows clear differences in correlations between steroids, fatty acids, sphyngomyelins, amino acids, and γ glutamyl peptides 
between the 3 groups, suggesting a more flexible and resilient metabolism in the HT and RT groups compared with UC.

Conclusion: This first exploratory study investigating metabolic effects of Healing Touch in cancer patients indicated 
suggestive differences in metabolic signatures which need further investigation in a larger study.
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underlying these specific beneficial effects of HT is not 
fully understood.

Chemotherapy and radiation therapies are known to 
exacerbate the hypoxic tumor environment, thereby wors-
ening deficiencies in glycemic control and inducing diabe-
tes type 2-like phenotypes in cancer patients.11 Cancer 
patients exposed to chemotherapy often show elevations in 
glucose and lactate, as well as in fatty acids (FA) conjugated 
to carnitine (acylcarnitines) by the mitochondrial mem-
brane carnitine-palmitoyltransferase 1 and 2 (CPT1/2). 
CPT2 allows for the internalization of FA for their oxida-
tion. CPT1 converts long-chain acyl-CoA species to their 
corresponding long-chain acyl-carnitines for fatty acid 
beta-oxidation within mitochondria.12 Other expected con-
sequences of the metabolic “reprograming” in cancer 
patients exposed to chemotherapy are elevations in alpha-
ketobutyrate and ketone body β-hydroxybutyrate (BHB). 
These compounds can provide cells with an alternative car-
bon source to feed mitochondria in conditions of low glu-
cose and respiratory failure or hypoxia.13 Therefore, hypoxic 
stress and subsequent prolonged impairments in the use of 
glucose and pyruvate as mitochondrial fuels can lead to bio-
energetic dysfunction and oxidative damage, resulting in 
inflammation, fatigue, lactic acidosis, and anemia.14,15 
These side effects of chemotherapy can impair the treat-
ment and quality of life of cancer patients and impact the 
recovery process.

To provide greater insight into the potential cellular 
pathway(s) underlying the preservation of NKCC associ-
ated with HT treatment during chemotherapy, the metabolic 
composition of plasma samples from patients with cervical 
cancer collected in the study conducted by Lutgendorf et al7 
was analyzed. Plasma samples were collected prior to che-
motherapy in weeks 1, 4, and 6. Plasma samples were sub-
jected to untargeted metabolomics analysis to reveal 
possible metabolic changes in HT-treated cancer patients 
compared to those treated with RT or with UC over time.

Methods

Details of the study design, patient recruitment, interven-
tion, and procedures are described in the main publication 
of the study results.7 A summary is provided below to 
understand the essentials of the study. The metabolomics 
analysis, multivariate data analysis, bioinformatics, and 
biological interpretation is new and is described in detail 
below. The clinical trial was registered at ClinicalTrials.gov 
(NCT04905576). Ethics approval was obtained from the 
IRB of the University of Iowa (IRB # 200105058) and 
included approval for the metabolomics measurements.

Participants

Patients over 18 years of age with stage IB1 through IVA cer-
vical squamous or adenocarcinoma were recruited between 

May 2002 and March 2007 through the Gynecologic 
Oncology service at a large Midwestern academic medical 
center. Patients were excluded for conditions affecting the 
immune system (eg, lupus), use of systemic steroid medica-
tion within a month of study entry, receipt of radiation treat-
ment at another medical center, refusal of radiotherapy, and 
poor English fluency. All participants provided written 
informed consent. All patients received standard medical 
treatment consisting of weekly platinum-based chemoradia-
tion, external beam radiation (total dose 45-50.4 Gy), and 
brachytherapy. In the original study a total of 60 patients 
were randomized and the study was completed by 17 in each 
condition. The current study includes 129 available samples 
from 44 patients.

Intervention

Healing Touch (HT).  Healing Touch is a non-invasive ther-
apy used to restore harmony and balance in the energy sys-
tem of the patient (the biofield) and to improve the 
self-healing capacity of the patient.3,16 Healing Touch was 
provided in 20 to 30-min sessions 4 days per week during 
the 6-week chemoradiation treatment by 3 nurses who were 
certified Healing Touch practitioners. Sessions were usu-
ally provided by a team of 2 practitioners (63.5% of the 
sessions) and were provided on non-chemotherapy days 
following radiation treatment. The following techniques 
were used: (1) grounding and centering, (2) pain drain, (3) 
chakra connection, (4) magnetic unruffling, and (5) mind 
clearing. Techniques 2, 3, and 5 may involve physical 
touch, 1 and 4 do not. Additional techniques were used 
depending on patient presentation.

Relaxation Training (RT).  Relaxation training was provided 
in 20 to 25-min sessions 4 days per week during the 6-week 
chemoradiation treatment on non-chemotherapy days 
immediately following radiation, by 1 of 3 trained research 
assistants or graduate students. The therapists used manual-
ized scripts adapted from existing protocols17 to guide the 
relaxation process. The scripts included: (1) passive pro-
gressive relaxation, (2) autogenic relaxation, (3) relaxation 
with nature imagery, and (4) relaxation including imagery 
of a special place selected by the patient.

Usual Care (UC).  Patients in the Usual Care group received 
no intervention in addition to standard chemoradiation 
treatment.

Procedure

The study was conducted as a 3-arm randomized single-
blinded clinical trial. Patients were randomized to 1 of 3 
conditions by permuted block randomization performed by 
the Holden Comprehensive Cancer Center statistical core. 
Blood samples were collected prior to chemotherapy in 
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weeks 1, 4, and 6 in heparinized tubes (BD Biosciences, 
San Jose, CA). Plasma was frozen at −80°C until analysis, 
which is a standard storage procedure ensuring good metab-
olite stability for at least 16 years.18 All samples were coded. 
The study interventions started following radiation treat-
ment the day after the baseline blood samples were taken. 
Psychosocial surveys were completed before each blood 
draw. Laboratory personnel and health care providers were 
blind to randomization status.

Blood pressure measurements were taken to assess the 
extent of relaxation during study interventions. A series of 3 
blood pressures was taken before and after the second RT or 
HT session in weeks 1, 3, and 5 using a Dinamap Pro 100 
(Critikon, Tampa, FL) vital signs monitor applied to the 
non-dominant arm. For UC patients, similar blood pressure 
measurements were taken before and after a 20 to 25 min 
neutral video at equivalent timepoints.

Clinical information was collected from medical records. 
Demographic information, health behavior information and 
psychosocial surveys were collected before each blood 
draw. Data from these surveys and blood pressure assess-
ments is reported elsewhere.7

Metabolomics Measurements

Plasma samples were sent to Metabolon, Inc. (Durham, 
NC) for metabolomics analyses in 2017. The analysis of 
plasma samples for metabolomics was done blinded. 
Sample preparation consisted of protein precipitation with 
methanol under vigorous shaking for 2 min followed by 
centrifugation. A pooled sample consisting of a small vol-
ume of all samples was used as a quality control (QC) sam-
ple.19 Water samples were used as blanks. All samples were 
spiked with a cocktail of QC standards. Experimental sam-
ples were randomized across the platform run with QC 
samples spaced evenly among the injections.

All analyses were conducted using a Waters ACQUITY 
ultra-performance liquid chromatograph (UPLC) and a 
Thermo Scientific Q-Exactive high resolution/accurate 
mass spectrometer interfaced with a heated electrospray 
ionization source (HESI-II) and Orbitrap mass analyzer 
operated as 35 000 mass resolution. One aliquot was ana-
lyzed using a C18 column (Waters UPLC BEH C18-
2.1 × 100 mm, 1.7 µm) using a water methanol gradient 
containing 0.05% perfluoropentanoic acid (PFPA) and 
0.1% formic acid (FA) in positive ion mode. For the second 
aliquot, the same C18 column was used with a methanol, 
acetonitrile, water gradient, containing 0.05% PFPA and 
0.01% FA in positive ion mode. For the third aliquot a sepa-
rate C18 column was used with a methanol water gradient, 
with 6.5 mM ammonium bicarbonate at pH 8 in negative 
ion mode. For the fourth aliquot a HILIC column (Waters 
UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) was used with a 

water acetonitrile gradient with 10 mM ammonium formate 
at pH 10.8 in negative ion mode. The MS analysis alter-
nated between MS and data-dependent MSn scans using 
dynamic exclusion. The scan range varied slighted between 
methods but covered 70 to 1000 m/z.

Metabolomics Data Analysis

Data Processing.  Raw data was extracted, peak-identified and 
QC processed using Metabolon’s hardware and software. 
Compounds were identified by comparison to library entries 
of purified standards or recurrent unknown entities. Biochem-
ical identifications are based on 3 criteria: retention index 
within a narrow RI window of the proposed identification, 
accurate mass match to the library ±10 ppm, and the MS/MS 
forward and reverse scores between the experimental data and 
authentic standards. The MS/MS scores are based on a com-
parison of the ions present in the experimental spectrum to the 
ions present in the library spectrum. For metabolite quantifi-
cation, peaks were quantified using area-under-the-curve. For 
studies spanning multiple days, a data normalization step 
(median centering) was performed to correct variation result-
ing from instrument inter-day tuning differences.

Data were log transformed, variables with ≥20% miss-
ing values were removed, and remaining missing values 
were imputed by the minimum observed value for each 
variable.20 Fold changes between week 6 versus week 1 
were calculated (week 6-week 1/week 1).

Multivariate Data Analysis.  Principal Component Analysis21 
was applied on auto-scaled data and the fold change data to 
explore differences in metabolite profiles between the HT, 
RT, and UC groups at week 1 and week 6. Scree plots were 
used to determine the number of relevant components. Par-
tial Least Squares Discriminant Analysis with cross valida-
tion and permutation testing22 using the Kodama R-package23 
was conducted per time point to construct models to confirm 
and predict differences between the groups.

Univariate Data Analysis.  To further explore the data, 
T-tests24 were conducted to test differences between groups 
on the fold change data (comparing week 1 with 6). T-tests 
were also conducted per variable to assess differences 
between week 1 and 6 for each of the 3 groups. The Ben-
jamini-Hochberg procedure was used to correct for multiple 
testing as this procedure is deemed suitable for exploratory 
multivariate analyses in which correlated metabolites are 
expected.25,26 Significance levels are presented as q-val-
ues.27 Our focus was on differences between week 1 and 6 
to examine overall changes over time; thus, data on differ-
ences between week 1 and 4 and between 4 and 6 are not 
shown. Standard mean differences according to Cohen’s d 
are calculated to present effect sizes.



4	 Integrative Cancer Therapies 

Network Analysis.  Network analysis is an increasingly pop-
ular approach which is often conducted in addition to mul-
tivariate or univariate data analysis.28 A change between 
metabolic states doesn’t necessarily result in changes of 
average levels of metabolites but can also result in changes 
in pairwise correlations between metabolites.29 The correla-
tion structure of a list of metabolites therefore provides a 
global fingerprint of a physiological state and can provide 
insights regarding systemic changes between conditions.30 
The 100 metabolites with the largest variance accounted for 
(VAF) in the dataset were selected. Spearman correlations31 
were calculated per time point per intervention group. The 
correlations >.70 and <−.70 were converted to an edge list 
per time point and group. The edge lists were imported into 
CytoScape 3.9.0.32 to visualize the correlation structures per 
time point and group. A perfuse force directed layout was 
used to draw a first network, the layout of the nodes was 
then fixed for the subsequent networks. Edge color and 
edge thickness was used to visualize differences in the 
strength of the correlations between the intervention groups 
and time points.

Results

Demographic characteristics of the participating patients 
are presented in Table 1. Significant differences were found 
in FIGO stage between HT and UC and between RT and 
UC, not between HT and RT. No other significant differ-
ences in clinical variables or in demographics were found 
between the groups.

The number of included blood samples per time point is 
presented in Table 2. Since this was an exploratory analysis 
and the number of samples per group was limited, all avail-
able samples were included in data analyses. A total number 
of 884 metabolites were measured and identified; 221 of 
these were removed due to >20% missing values across the 
samples leaving 663 metabolites for data analysis.

Multivariate Data Analysis

A PCA analysis was conducted on the fold change data 
(week 6-week 1/week 1). A scree plot indicated 2 relevant 
principal components. No separation between the 3 inter-
vention groups was visible in the PCA score plot. A PLS-DA 
model on the same data was not significant (P = .191), indi-
cating that no significant model could be constructed to 
accurately predict differences in fold changes between the 3 
groups.

Principal component analyses were then performed on 
(a) the full data set, (b) per intervention group, and (c) per 
time point. Scree plots indicated the number of relevant 
components per PCA analysis. A separation between inter-
vention groups or time points was not visible in any of the 
score plots. Since the main research aim was to explore 

whether there were differences between intervention groups 
over time, partial least squares discriminant analyses 
(PLS-DA) were conducted on the data at week 1 and week 
6. Neither of the PLS-DA models was significant (week 1: 
P = .92, week 6: P = .63) indicating that no significant mod-
els could be constructed that could accurately predict differ-
ences in the metabolome between the 3 groups at baseline 
and week 6.

Univariate Data Analysis

T-tests were performed for the calculated fold changes 
between week 1 and week 6 for all metabolites. None of the 
fold changes were significantly different between the inter-
vention groups after Benjamini-Hochberg correction. The 
list of metabolites with the largest fold change differences 
(week 1 vs week 6) between the HT and UC groups (n = 36 
with uncorrected P < .10) and between the HT and RT 
groups (n = 56 with uncorrected P < .10) are shown in 
Supplemental Data Tables S1 and S2.

T-tests were then performed on all 663 metabolites 
between time points 1 and 6, within each intervention group 
separately. No significant differences were found between 
the groups at baseline. Significant differences between 
week 1 and week 6 after Benjamini-Hochberg correction 
were found for 14 metabolites in the UC group, 26 metabo-
lites in the RT group and 24 metabolites in the HT group. 
These 54 significant differences represent 49 unique metab-
olites, which are presented in Table 3 with the correspond-
ing q-values and effect size (Standard Mean Difference or 
Cohen’s d).

Several metabolites showed significantly different abun-
dance at week 6 compared with baseline in the HT group, and 
not in the RT or UC groups (see Table 3). These metabolites 
are: 1,2-dipalmitoyl-GPC (16:0/16:0), 1-stearoyl-2-arachi-
donoyl-GPE (18:0/20:4), arachidonoylcarnitine (C20:4), 
dihomo-linolenoylcarnitine (20:3n3 or 6), dihomo-linoleoyl-
carnitine (C20:2), eicosenoylcarnitine (C20:1), ergothione-
ine, linoleoylcarnitine (C18:2), proline, taurodeoxycholate, 
and taurolithocholate 3-sulfate. The majority of these metab-
olites showed significant decreases over time. Metabolites 
specifically different over time within the RT group are: 
1-methylhistidine, 1-palmitoyl-2-linoleoyl-GPE (16:0/ 
18:2), 1-palmitoyl-2-oleoyl-GPC (16:0/18:1), 1-palmitoyl-
2-oleoyl-GPE (16:0/18:1), 5-bromotryptophan, androstene-
diol (3alpha, 17alpha) monosulfate (2), cerotoylcarnitine 
(C26), citrulline, epiandrosterone sulfate, gamma-carboxy-
ethyl hydroxychroman, guanidinoacetate, homoarginine, 
imidazole lactate, oleoyl-arachidonoyl-glycerol (18:1/20:4) 
[2], and stearoylcarnitine (C18). Significant changes  
found only in the UC group included the following: 7-meth-
ylguanine, kynurenine, N6-carbamoylthreonyladenosine, 
N-acetylalanine, N-acetylthreonine, O-sulfo-L-tyrosine, 
phenyllactate (PLA), pseudouridine, and quinolinate. All of 
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Table 1.  Demographics of the Participants.

Measure
Healing touch 
(HT)

Relaxation 
(RT)

Usual care 
(UC)

Age, years (standard deviation)
(n = 14,17,13)

49.57 (13.62) 42.00 (9.70) 46.62 (14.21)
Range 29-73 Range 24-60 Range 26-77

Education (n = 12,17,12) (%)
 Less than high school 0.0 5.9 0.0
 Some high school 8.3 0.0 8.3
 High School Graduate 41.7 35.3 25.0
 Trade School 0.0 5.9 0.0
 Some college 25.0 29.4 33.3
 College graduate 16.7 17.6 33.3
 Post-graduate 8.3 5.9 0.0

Annual Income (n = 14,17,11) (%)
 $10 000 or less 28.6 29.4 18.2
 $10 001-$20 000 7.1 23.5 18.2
 $20 001-$30 000 28.6 17.6 18.2
 $30 001-$40 000 21.4 0.0 18.2
 $40 001-$50 000 7.1 23.5 27.3
 > $50 000 7.1 5.9 0.0

Race (n = 14,17,13) (%)
 American Indian/Alaskan Native 0.0 0.0 7.7
 Asian/Pacific Islander 0.0 0.0 0.0
 African American (non-Hispanic) 0.0 0.0 0.0
 Caucasian (non-Hispanic) 100.0 100.0 92.3

Ethnicity (n = 14,17,13) (%)
 Hispanic 7.1 0.0 0.0
 Non-Hispanic 92.9 100.0 100.0

Relationship status (n = 14,17,12) (%)
 Married/Living with partner 64.3 70.6 50.0
 Single/divorced/widowed 35.7 29.4 50.0

FIGO stage (n = 14,17,13) (%)
 IBI 42.9 11.8 15.4
 IBII 7.1 17.6 28.5
 IIA 0.0 17.6 0.0
 IIB 35.7 41.2 7.7
 IIIA 0.0 0.0 0.0
 IIIB 14.3 11.8 30.8
 IVA 0.0 0.0 7.7

Body Mass Index (kg/m2; n = 14,17,13) (%)
 Underweight (<18.5) 7.1 17.6 23.1
 Normal weight (18.5-24.9) 23.7 47.2 38.5
 Overweight (25.0-29.9) 42.9 17.6 7.7
 Obese (≥30) 14.3 17.6 30.7

Sleep in past week, hours/nite, mean (SD; n = 14,17,13) 6.83 (1.47) 6.97 (1.91) 6.33 (1.87)
Cigarettes, packs/day, mean (SD; n = 13,17,12) 0.17 (0.31) 0.24 (0.47) 0.25 (0.45)
Caffeine, cups/day, mean (SD; n = 12,17,12) 1.67 (2.27) 1.29 (1.99) 1.83 (2.72)
Alcohol, drinks/day, mean (SD; n = 13,16,11) 0.23 (0.60) 0.19 (0.54) 0.18 (0.60)
Cycles of chemotherapy before final blood draw (n = 14,17,12) 4.36 (0.74) 4.12 (0.78) 4.21 (0.71)
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these represented decreases over time. Several metabolites 
showed significantly different abundance at week 6 com-
pared with week 1 in both the RT and HT group, and not in 
the UC group. These metabolites are: 1,5-anhydroglucitol 
(1,5-AG), 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4), 
citrate, glycosyl ceramide (d18:2/24:1, d18:1/24:2), glyco-
syl-N-behenoyl-sphingadienine (d18:2/22:0), myo-inositol, 
and taurine. The majority of these metabolites showed sig-
nificant decreases over time.

Network Analysis

A network was constructed with a total of 654 metabolite 
correlations (edges) representing the most important metab-
olites for the variations in the dataset. Figure 1 illustrates 
the differences in correlation structure between the HT, RT 
and UC group at week 6. The correlation networks show 
that the metabolites are grouped into 5 major clusters, rep-
resenting sphingomyelins, amino acids, γ-glutamyl pep-
tides, fatty acids, and steroids. Differences in the color and 
width of the edges between conditions represent general 
changes in correlation strength between the metabolites 
related to these clusters. The UC group has a higher number 
of strong correlations (thicker edges and more red and gray 
edges) than the RT and HT groups at week 6. The correla-
tions between the steroids and fatty acids are much stronger 
in the HT group than in the RT group, and in the UC group 
these are mostly negatively correlated. In the UC group, the 
correlations between the fatty acids and sphingomyelins are 
much stronger than in the RT and HT groups. Furthermore, 
the γ-glutamyl peptides are more strongly correlated in the 
UC group.

In Figure 2, the differences in the correlations in the HT 
group are illustrated over time. The structure of the net-
works is kept the same as in Figure 1 to provide easy com-
parisons between the figures. The edges of the networks are 
colored according to the strength of correlation in the HT 
condition. The red arrows in Figure 2 point to areas with the 
more pronounced differences in correlation structure 
between week 1 and week 6. The strength of the correla-
tions between the steroids and fatty acids seem to increase 
over time (more red and thicker lines). The negative corre-
lations (gray) between the γ-glutamyl peptides and fatty 
acids in week 1 are much less present in week 6. Additionally, 
the γ-glutamyl peptides are much less strongly correlated 
with each other as a group at week 6 compared to week 1. 

These latter changes in γ-glutamyl peptides and fatty acids 
suggest more metabolic flexibility in these areas, while the 
stronger correlations between steroids and fatty acids sug-
gest more metabolic inflexibility in those areas. Metabolic 
flexibility refers to the ability of the organism to efficiently 
adapt its metabolic state to conditions of stress, such as 
physical exercise, mental stress, and infections.33

Discussion

This is the first investigation of which we are aware to 
explore possible effects of Healing Touch on metabolites 
measured in blood using state of the art analytical chemistry 
methods. Participants were patients with cervical cancer 
undergoing chemoradiation. Because of the small number 
of subjects in each group, we consider these analyses to be 
primarily exploratory. Principal component analysis did not 
reveal differences either between the groups, between time 
points, or between the changes in the groups over time, 
indicating that there were no overarching metabolic varia-
tions between the groups, time points, or between the 
groups over time. However, univariate analysis revealed a 
list of metabolites with significant within group changes 
over time (week 1 vs week 6). This list contained 11 metab-
olites specifically changed in the HT group over time and 
not in the RT and UC groups. It also contained 15 metabo-
lites significantly changed in the RT group only, and 8 
metabolites significantly changed in the UC group only. 
These will be discussed below.

Metabolic Effects of HT

Five long chain acyl carnitines were found to be signifi-
cantly decreased in the HT group over time (arachidonoyl-
carnitine (C20:4), dihomo-linolenoylcarnitine (20:36n3 or 
), dihomo-linoleoylcarnitine (C20:2), eicosenoylcarnitine 
(C20:1), and linoleoylcarnitine (C18:2)), whereas no sig-
nificant changes in acyl carnitines were found in the RT or 
UC groups over time. The main function of long chain acyl-
carnitines is the transportation of long chain fatty acids into 
mitochondria.34 Mitochondria are multifunctional organ-
elles that contribute to organismal health by receiving, inte-
grating, and producing various molecular and non-molecular 
signals, including metabolites.35 The carnitine systems may 
be involved in the metabolic flexibility of cancer cells and 
the switch between glucose and fatty acid metabolism.36,37 

Table 2.  Number of Blood Samples Analyzed for Metabolomics.

Samples Healing touch (HT) Relaxation (RT) Usual care (UC)

Week 1 14 17 13
Week 4 13 17 13
Week 6 14 17 11
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An increase in long chain acyl carnitines is associated with 
metabolic changes in several types of cancer.38 Changes in 
mitochondrial metabolism are also found to be associated 
with platinum-based chemotherapy, which can increase the 
concentration of long chain acylcarnitines in blood and is 

associated with cancer related fatigue.39 This effect appears 
to be reduced in the HT group.

Psychological stress is characterized by changes in 
energy balance and metabolism, aimed at priming the 
organism for a rapid response to a threatening situation.40 

Figure 1.  Differences in correlations between HT, RT, and UC groups at week 6. Correlations >.70 and <−.70 are visualized. 
Correlations are indicated on a scale from red (positive) to blue (negative) and thick (stronger) to thin (weaker).
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Studies in animal models of chronic unpredictable stress 
show substantial changes in metabolomics, including 
altered levels of amino acids, fatty acids, carnitines, and 
phospholipids.41 This is consistent with changes in several 
acylcarninites we observed in the HT group over time. 
Multiple metabolomics studies have been conducted in the 
area of mental health conditions such as depression and 
anxiety.42,43 In a systematic review of 27 studies on lipido-
mics and genomics in mental health conditions, changes are 
reported in lipid signatures including triglycerides (TG), 

ceramides, fatty acids, and phosphatidylcholine between 
healthy controls and individuals with mental health condi-
tions indicating common metabolic pathways underlying 
these mental health conditions.42

Lower concentrations of long chain acylcarnitines have 
been found in plasma samples of subjects with anxious 
depression, depression and neurovegetative symptoms of 
melancholia.44 In depressed patients the relevant long chain 
acylcarnitines had a carbon chain length between C14 and 
C18, while in our study 4 significant acylcarnitines with 

Week 1

Week 6Week 6

-1 1

Sphingomyelins

Amino acids

γ glutamyl pep�desSteroids
Fa�y acids

Figure 2.  Differences in correlations in HT group over time. Correlations >.70 and <−.70 are visualized. Correlations are indicated 
on a scale from red (positive) to gray (negative) and thick (stronger) to thin (weaker). The red arrows point to areas with differences 
between week 1 and week 6.



van Wietmarschen et al	 11

length C20 and 1 of C18 decreased over time. Various pat-
terns of changes in short, medium and long chain acylcarni-
tines have been found in patients with anxious depression, 
depression and melancholia as a result of 8 weeks treatment 
with an SSRI.44,45 Interestingly, the C18:2 acylcarnitine 
decreased after treatment with an SSRI and was also found 
to decrease after HT treatment in our study.

Proline was found to be significantly reduced in the HT 
group at week 6. This metabolite is known as an overall risk 
factor for cancer and has a possible role in tumor growth.46 
Quinolinate and kynurenine were significantly reduced at 
week 6 compared to week 1 in the UC group, but not in the 
RT and HT group. These 2 metabolites are part of the kyn-
urenine pathway which is related to the production of 
immunosuppressive metabolites and is reported to be 
related to cancer cell motility and migration.47 The mito-
chondria-related kynurenine pathway is the only pathway 
responsible for the synthesis of the metabolic cofactor nico-
tinamide adenine dinucleotide (NAD+, of which kynurenine 
is a precursor), which decreases with aging and whose sup-
plementation improves resilience to age-related deteriora-
tion and mitochondrial respiratory capacity in animal 
studies (reviewed in Castro-Portuguez and Sutphin,48 
Mitchell et al.,49 and Miwa et al.50). Furthermore, reduced 
plasma kynurenine levels are associated with major depres-
sive disorder, indicating a reduced availability of trypto-
phan.51 The decline of these metabolites in participants 
receiving chemotherapy and UC compared to their pre-
served levels in the HT and RT groups, could reflect some 
protection from these age-related effects and possible 
depressive symptoms by both treatments.

The univariate analysis indicated different patterns 
between the HT and UC groups in fatty acid synthesis. Fatty 
acid oxidation has been shown to be essential for appropri-
ate natural killer cell response in cancer52 and the exposure 
of natural killer cells to fatty acids might affect their func-
tion.53 We found a significant increase in 1,2-dipalmitoyl-
GPC (16:0/16:0) and 1-stearoyl-2-arachidonoyl-GPE 
(18:0/20:4) in the HT group over time. In the RT group 
three fatty acids showed a significant increase over time: 
1-palmytoyl-2-linoleoyl-GPE (16:0/18:2), 1-palmytoyl-
2-oleoyl-GPC (16:0/18:1), 1-palmytoyl-2-oleoyl-GPE 
(16:0/18:1). One fatty acid (1-palmitoyl-2-arachidonoyl-
GPE (16:0/20:4)) was significantly increased in both the RT 
and HT groups over time. Phosphatidylcholine (1,2-dipal-
mitoyl-GPC (16:0/16:0)) is increased over time in the HT 
group and is the most abundant phospholipid component of 
mitochondria, where its abundance relative to other lipids 
influences several aspects of mitochondrial biology.54 
Phosphatidylcholine metabolism is known to be deregu-
lated in multiple cancer types55 and mediates cancer cell 
growth and survival.56 Phosphatidylcholine catabolism gen-
erates lysophosphatidylcholines, which play an important 
role in tumor invasion, metastasis, and prognosis56 and also 

have a more general role in immune function, such as a che-
motactic effect on NK cells.57 Furthermore, low levels of 
phosphatidylcholine and lysophosphatidylcholine are 
reported biomarkers for heterogeneous cancers46 and cervi-
cal cancer specifically.58 The increase in phosphatidylcho-
line over time that we found in the HT group therefore 
suggests a positive response. In contrast, in a study of 
patients with major depressive disorder an upregulation of 
lysophospoholipids was found, although these were differ-
ent lipids from the ones in our study.45

Two bile acids, taurodeoxycholate (TDCA) and tauro-
lithocholate 3-sulfate, were found to be significantly 
decreased in the HT group over time, but not in the UC and 
RT groups. Taurine, an important molecule needed for bile 
acid synthesis and involved in energy metabolism and posi-
tively associated with a longer health span and longer life 
span,59 was found to be significantly decreased in both the 
HT and RT groups over time, and not in the UC group. 
These results seem contrary to our predictions but might 
indicate that bile acid metabolism is affected by the HT 
intervention. Bile acids are increasingly associated with 
anti-cancer properties in several cancer types60 and changed 
bile acid ratios associated with altered gut microbiome are 
found in people with anxiety and depressive disorder.61

Network Analysis

Network analysis is currently considered as an important 
part of the -omics data analysis strategy.62 It provides an 
additional view on the data in terms of relationships between 
metabolites and provides complementary information in 
addition to individual metabolite abundance changes over 
time. For instance, in Park et al63 metabolite networks were 
used to interpret the molecular mechanisms related to 
changes in BMI. However, apart from exceptions like this 
the relationship between network changes and health out-
comes has been largely uncharacterized. In our study net-
work analyses were conducted to further explore differences 
between the intervention groups and differences in their 
changes over time. The networks reveal stronger correla-
tions between the steroids and fatty acids in the HT group, 
compared to the RT and UC groups. Both steroid and fatty 
acid oxidation occur in mitochondria35 and the synthesis of 
all steroid hormones is regulated by mitochondria.64 
Steroids as modulators of the stress response have an impor-
tant modulatory effect on immune function.65 In both the 
RT and HT groups, the correlations between steroids and 
fatty acids were less strong overall than in the UC group. 
Strong correlations between subsystems are known to indi-
cate less resilience66 and may indicate less metabolic flexi-
bility in the case of strong cross-correlations in metabolic 
network structures. Metabolic flexibility is described as a 
key indicator for health, which is commonly assessed by 
challenge tests such as the oral glucose tolerance test or 
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immunological challenge tests (eg, a lipopolysaccharide 
test).33 A less flexible system, which can occur during a dis-
ease, is less able to cope with nutritional, mental, inflamma-
tory, or other stressors from the environment. Our data 
suggest a more flexible and resilient metabolism in the HT 
and RT groups compared to the UC group.

Additionally, there are clear differences in correlations 
between the fatty acids and sphingomyelins in the UC group 
compared with the HT and RT groups. Sphingolipids play 
important roles in mitochondrial biology, including regula-
tion of energy transformation, signaling, and cell death 
pathways.67,68 Sphingomyelins have been found to be asso-
ciated with sensitivity to chemoradiation in cervical cancer 
patients.69 The network analysis seems to suggest a more 
pronounced resilience and metabolic flexibility in the HT 
condition compared to UC and suggests general effects of 
HT and RT on steroid, fatty acid, amino acid, sphingomy-
elins, and γ-glutamyl peptides metabolism. These findings 
provide overall support to the univariate analysis in which 
differences in phosphatidylcholine and lysophosphatidyl-
choline concentrations between the HT, RT, and UC groups 
were found.

Study Limitations

The primary outcome measures of the original study were 
natural killer cell activity, depression, and chemoradiation 
induced toxicities. Therefore, the study was not specifically 
designed or powered to detect differences in metabolomic 
profiles of blood samples, and these analyses should be 
seen as primarily exploratory. Additionally, blood samples 
were only available for metabolomics analysis for 44 of the 
61 patients participating in the original study and in the cur-
rent analysis, not all patients had complete samples at each 
timepoint. Because this was an exploratory analysis with 
limited numbers of samples, we used all available samples 
and resulting data for the analyses but power to detect 
between group differences is limited. Samples were stored 
between 10 and 15 years before the metabolomics analyses 
were performed, which could have resulted in degradation 
of certain metabolites; however this storage span is still 
within generally accepted periods for sample storage.18

The results of the PLS-DA analysis didn’t indicate a 
clear separation between the groups and the univariate anal-
ysis of the fold changes between week 1 and 6 revealed no 
significant differences between the groups in changes in 
metabolites over time. However, significant differences 
between weeks 1 and 6 were found in each group separately, 
which were significant even after correcting for multiple 
testing. Furthermore, multiple changes in groups of metab-
olites together could each contribute a small part to larger 
overall effects. Because of this discrepancy between the 
multivariate and univariate results, all findings are consid-
ered exploratory and should be treated with caution until 
confirmed in a larger sample.

Participants were not aware of their assigned interven-
tion until after the baseline surveys and blood draws had 
been completed. As both HT and relaxation involved direct 
interaction with practitioners, it was not possible to blind 
the participants to their assigned intervention. It is possible 
that expectations regarding their intervention or non-spe-
cific effects from interactions with the practitioners may 
have affected the results. We have previously reported that 
there was no difference in expectations prior to the inter-
vention, and no difference in endorsement of benefit 
between the different conditions following the intervention 
although there was a possible trend (P = .06) for patients in 
the HT group to report greater reduction of treatment side-
effects than patients in RT.7 Nevertheless, we cannot totally 
rule out effects of expectations or non-specific factors on 
these results.

It would have been interesting to examine metabolic dif-
ferences between the 2 active groups, HT and RT. However, 
in exploratory analyses with 44 people we were not ade-
quately powered to test the differences between 2 active 
interventions. We have presented the metabolites with the 
largest differences in Supplemental Files S1 and S2. The S2 
file contains the direct comparisons between RT and HT. 
For the top 20 metabolites the difference between the 
change in RT and the change in HT was significant in unad-
justed univariate analyses but are non-significant with 
Benjamini-Hochberg corrections (Q-value). Thus, the ques-
tion of differences between active interventions such as HT 
and RT will need to be explored in a larger sample.

In our previous report7 we indicated that the groups did 
not differ in treatment delay or in clinically assessed toxici-
ties. However, we do not have a measure of treatment 
response. Thus, we were not able to examine relationships 
of metabolites to clinical endpoints, thereby limiting our 
ability to judge the clinical significance of the observed 
metabolic shifts. Baseline differences in disease stage were 
found between the groups which could possibly have influ-
enced the response to the different interventions and and 
thereby resulted in differences in metabolite profiles 
between the groups. However, no differences in the metab-
olite profiles were found at baseline between the groups.

Conclusions

This is the first study investigating potential metabolic 
effects of the complementary therapy of Healing Touch in 
cancer patients. Findings indicate that there were not over-
arching differences in the metabolic profiles of HT versus 
relaxation or usual care conditions over time. Univariate 
analyses and network analyses indicated suggestive differ-
ences in metabolite signatures potentially consistent with 
intervention associated differences in acylcarnitines and 
fatty acid metabolism. We speculate that this could relate to 
a role of mitochondria operating as a metabolic hub trans-
ducing and transforming energy in its different forms.70 
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Future work is needed to assess these relationships in a 
larger sample, and to establish the clinical significance of 
any metabolic changes.
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